Chemistry

DPS-1 Class XI DAILY PRACTICE SHEET

Some Basic Concepts of Chemistry

Instructions

- DPS-1 contains 50 topicwise questions including 5 exam section questions.
- Each question has four options out of which only one option is correct.
- Each question carries 4 marks.
- Mark the correct answer in the OMR Sheet given at the end of the DPS.

Max. Marks: 200

General Introduction

- 1. Two students *X* and *Y* report the weight of the same substance as 4.0 g and 4.00 g respectively. Which of the following statement is correct?
 - (a) Both are equally accurate.
 - (b) X is more accurate than Y.
 - (c) *Y* is more accurate than *X*.
 - (d) Both are inaccurate scientifically.
- **2. Assertion :** The greater the number of significant figures in a reported result, smaller is the uncertainty and greater is the precision.

Reason : A significant figure includes all the digits that are known with certainty plus one more digit which is estimated or is uncertain.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.

(c) If assertion is true but reason is false.

Time: 50 minutes

- (d) If both assertion and reason are false.
- **3.** Match the following.

	List I	List II				
A.	1 Faraday	(i)	10^{-5} N			
В.	1 Dyne	(ii)	0.2390 cal			
C.	1 Joule	(iii)	2.389×10^{-8} cal			
D.	1 Litre	(iv)	9.6487×10^4 coulomb			
E.	1 Erg	(v)	10^{-3} m^3			
(a)	(a) A-(iv), B-(i), (C)-(ii), (D)-(v), (E)-(iii)					
(b) A-(ii), B-(i), (C)-(iv), (D)-(iii), (E)-(v)						
(c)	A-(i), B-(ii)), (C)-	-(iii),(D)-(iv),(E)-(v)			

- (d) A-(v), B-(iii), (C)-(iv), (D)-(ii), (E)-(i)
- **4.** Mark the rule which is not correctly stated about the determination of significant figures.

- (a) Zeros preceding to first non-zero digit are not significant.
- (b) Zeros between two non-zero digits are not significant.
- (c) Zeros at the end or right of the number are significant if they are on the right side of decimal point.
- (d) All non-zero digits are significant. Laws of Chemical Combinations
- 5. Assertion : 12 parts by mass of carbon in CO and CO_2 molecules combine with 16 and 32 parts by mass of oxygen.

Reason : A given compound always contains exactly the same proportion of elements by weight.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.
- **6.** Which of the following statement is correct about the reaction given below?

 $4\mathrm{Fe}_{(s)} + 3\mathrm{O}_{2(g)} \xrightarrow{} 2\mathrm{Fe}_2\mathrm{O}_{3(g)}$

- (a) Total mass of iron and oxygen in reactants
 = total mass of iron and oxygen in product therefore it follows law of conservation of mass.
- (b) Total mass of reactants = total mass of product; therefore, law of multiple proportions is followed.
- (c) Amount of Fe_2O_3 can be increased by taking any one of the reactants (iron or oxygen) in excess.
- (d) Amount of Fe_2O_3 produced will decrease, if the amount of any one of the reactants (iron or oxygen) is taken in excess.
- 7. When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of CO₂ and SO₂ in the volume ratio of 2 : 1, volume being measured at the same conditions of temperature and pressure. Number of moles of carbon in the mixture is

 (a) 0.75
 (b) 0.5
 (c) 0.40
 (d) 0.25
- 8. Assertion : In a gaseous reaction, the ratio by volumes of reactants and gaseous products is in agreement with their molar ratio.

Reason : Volume of gas is inversely proportional to its number of moles at particular temperature and pressure.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.

- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.
- **9.** Which of the following statements indicates that law of multiple proportion is being followed?
 - (a) Sample of carbon dioxide taken from any source will always have carbon and oxygen in the ratio 1:2.
 - (b) Carbon forms two oxides namely CO₂ and CO, where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1.
 - (c) When magnesium burns in oxygen, the amount of magnesium taken for the reaction is equal to the amount of magnesium in magnesium oxide formed.
 - (d) At constant temperature and pressure, 200 mL of hydrogen will combine with 100 mL of oxygen to produce 200 mL of water vapour.

Dalton's Atomic Theory

- **10.** Which law directly explains the law of conservation of mass?
 - (a) Dalton's law (b) Avogadro's law
 - (c) Berzillius law (d) Hund's rule
- **11.** Which of the following postulates of Dalton's atomic theory explains the law of constant proportion?
 - (a) Atoms of given element are identical in mass and chemical properties.
 - (b) Atoms combine in the ratio of small whole numbers to form compounds.
 - (c) The relative number and kind of atoms are constant in a given compound.
 - (d) All of these.

Atomic and Molecular Masses

12. If one gram of a metal carbonate gave 0.56 g of its oxide on heating, then equivalent weight of the metal will be

(a) 30 (b) 40 (c) 25 (d) 20

13. Assertion : Mass numbers of most of the elements are fractional.

Reason : Mass numbers are obtained by comparing with mass number of carbon taken as 12.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.

Mole Concept and Molecular Masses

14. The largest number of atoms are present in

(a) 5 g of NH₃
(b) 11 g of CO₂
(c) 8 g of SO₂
(d) 4 g of H₂

List I

15. Match the List I with List II and select the correct answer using the code given below the lists.

List II

- P. Mass of H_2 produced 1. 3.01×10^{23} when 0.5 mole of zinc molecules reacts with excess of HCl
- Q. Mass of a molecule 2. 6.023×10^{23} of a compound with molecules formula $C_{70}H_{22}$
- R. Number of molecules 3. 1.43×10^{-21} g in 35.5 g of Cl₂
- S. Number of molecules 4. 1 g in 64 g of SO_2

	Р	Q	R	S
(a)	2	1	4	3
(b)	1	2	3	4
(c)	4	3	1	2
(d)	4	3	2	1

- 16. The density of a liquid is 1.2 g/mL. There are 35 drops in 2 mL. The number of molecules in 1 drop is (molecular weight of liquid = 70)
 - (a) $\frac{1.2}{35}N_A$ (b) $\left(\frac{1}{35}\right)^2 N_A$ (c) $\frac{1.2}{(35)^2}N_A$ (d) $1.2N_A$
- 17. If 3.01×10^{20} molecules are removed from 98 mg of H₂SO₄, then the number of moles of H₂SO₄ left is (a) 0.1×10^{-3} (b) 0.5×10^{-3}
 - (c) 1.66×10^{-3} (d) 9.95×10^{-2}
- 18. How many valence electrons are present in 0.53 g of Na₂CO₃?
 - (a) $40 \times 6.023 \times 10^{23}$ (b) $0.2 \times 6.023 \times 10^{23}$
 - (c) $0.4 \times 6.023 \times 10^{23}$ (d) $2 \times 6.023 \times 10^{23}$
- **19.** The total number of electrons present in 18 mL of water (density of water is 1 g mL⁻¹) is
 - (a) 6.02×10^{23} (b) 6.02×10^{22}
 - (c) 6.02×10^{24} (d) 6.02×10^{25}
- **20.** A 5 L vessel contains 2.8 g of N_2 . When heated to 1800 K, 30% molecules are dissociated into atoms. Identify the correct statement.
 - (a) Total number of moles in the container will be 0.13.

- (b) Total number of molecules in the container will be 0.78×10^{23} .
- (c) Total number of atoms in the container will be 0.06.
- (d) All of the above.
- **21.** The total number of protons in 10 g of calcium carbonate is $(N_0 = 6.023 \times 10^{23})$
 - (a) 1.5057×10^{24} (b) 2.0478×10^{24}
 - (c) 3.0115×10^{24} (d) 14.0956×10^{24}

Percentage Composition

22. Two oxides of a metal contain 27.6% and 30.0% of oxygen respectively. If the formula of the first oxide is M_3O_4 , then second one is

(a) MO_2 (b) M_2O (c) M_2O_3 (d) M_3O_2

23. 0.30 g of an organic compound containing C, H and O on combustion yielded 0.44 g CO_2 and 0.18 g H₂O. If 1 mole of compound weighs 60 g, then molecular formula of the compound is (a) $C_2H_4O_2$ (b) CH_2O

(a)
$$C_{2}H_{4}O_{2}$$
 (b) $C_{12}O_{2}$
(c) $C_{3}H_{8}O$ (d) $C_{4}H_{12}$

- **24.** The oxygen-carrying protein known as haemoglobin is 0.335% Fe by mass and contains four Fe atoms per haemoglobin molecule. Calculate the molecular weight of this protein.
 - (a) 66 g mol^{-1} (b) 66.6 g mol^{-1}
 - (c) $6.6683 \times 10^4 \text{ g mol}^{-1}$ (d) 666 g mol^{-1}
- **25.** The empirical formula of an organic compound containing carbon and hydrogen is CH_2 . The mass of one litre of this organic gas is exactly equal to that of one litre of N_2 . Therefore, the molecular formula of the organic gas is
 - (a) C_2H_4 (b) C_3H_6 (c) C_6H_{12} (d) C_4H_8
- 26. A 400 mg iron capsule contains 100 mg of ferrous fumarate, (CHCOO)₂Fe. The percentage of iron present in it, is approximately
 (a) 33%
 (b) 25%
 (c) 14%
 (d) 8%

Stoichiometry and Stoichiometric Calculations

- 27. In a reaction container, 100 g of hydrogen and 100 g of Cl_2 are mixed for the formation of HCl gas. What is the limiting reagent and how much HCl is formed in the reaction?
 - (a) H_2 is limiting reagent and 36.5 g of HCl is formed.
 - (b) Cl_2 is limiting reagent and 102.8 g of HCl is formed.
 - (c) H_2 is limiting reagent and 142 g of HCl is formed.
 - (d) Cl_2 is limiting reagent and 73 g of HCl is formed.

28. Assertion : The molality of a solution does not change with change in temperature.

Reason : The molality is expressed in units of moles per 1000 g of solvent.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.
- **29.** A compound of iron and chlorine is soluble in water. An excess of silver nitrate was added to precipitate the chloride ion as silver chloride. If a 134.8 mg of the compound gave 304.8 mg of AgCl, what is the formula of the compound?
 - (a) FeCl₆ (b) FeCl₃
 - (c) FeCl_2 (d) FeCl_4
- **30.** When 22.4 litres of $H_{2(g)}$ is mixed with 11.2 litres of $Cl_{2(g)}$, each at S.T.P, the moles of $HCl_{(g)}$ formed is equal to
 - (a) 1 mol of $HCl_{(q)}$ (b) 2 mol of $HCl_{(q)}$
 - (c) 0.5 mol of $HCl_{(g)}$ (d) 1.5 mol of $HCl_{(g)}$
- 31. Match the Column I with Column II.

	Column I						Column II
А.	6.3 g solutio	oxali on	c acid i	n 100	mL	p.	1 N
В.	9.8 g H_2SO_4 in 209.8 g solution [density 1.049 g/mL]					q.	3 N
C.	A solution containing 46% r. ethanol (w/w)					r.	18.5 M
D.	98 g litre	phos	sphoric	acid	per	s.	Semi-molar
	Α	В	С	D			
(a)	s	р	r	q			

2.		1		1
(b)	S	р	q	r
(c)	q	S	r	р
(d)	r	q	р	S

- **32.** One litre of oxygen at STP is made to react with three litres of carbon monoxide at STP. Which one is the limiting reactant?
 - (a) CO (b) O_2
 - (c) CO_2 (d) None of these.
- **33.** How much water is needed to dilute 10 mL of 10 N hydrochloric acid to make it exactly decinormal (0.1 N)?
 - (a) 990 mL (b) 1000 mL
 - (c) 1010 mL (d) 100 mL

- 34. 2 g of a mixture of CO and CO₂ on reaction with excess I₂O₅ produced 2.54 g of I₂. What would be the mass % of CO₂ in the original mixture?
 (a) 60 (b) 30 (c) 70 (d) 35
- 35. Assertion: The normality of 0.3 M aqueous solution of H₃PO₃ is equal to 0.6 N.
 Reason: Equivalent weight of H₃PO₃

$$\frac{\text{Molecular weight of H}_3\text{PO}_3}{3}$$

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.
- **36.** In the reaction,

=

- 2Al _(s) + 6HCl _(aq) \longrightarrow 2Al³⁺ _(aq) + 6Cl⁻ _(aq) + 3H_{2 (g)} (a) 112 L H_{2 (g)} at STP is produced for every mole HCl _(aq) consumed
- (b) 6 L HCl _(aq) is consumed for every 3 L H_{2 (g)} produced
- (c) 33.6 L $H_{2(g)}$ is produced regardless of temperature and pressure for every mole Al that reacts
- (d) 67.2 L H_{2 (g)} at STP is produced for every mole Al that reacts.
- 37. The ratio of amounts of H₂S needed to precipitate all the metal ions from 100 mL of 1 M AgNO₃ and 100 mL of 1 M CuSO₄ will be
 (a) 1:1
 (b) 1:2
 - (c) 2:1 (d) None of these.
- **38.** Match the List I showing products of reactions to the List II showing amount of the product formed and select the correct answer using the code given below the lists :

	List	Ι				List II
P.	2H ₂ 1 g	+ C 1	$p_2 - p_2 - p_2$	→ 2H ₂ O	1.	0.56 g
Q.	N ₂ - 1 g	2.	1.333 g			
R.	CaC	CO ₃	\rightarrow	3.	1.125 g	
S.	2H ₂ 1 g	+ C 1	g	► CH ₄	4.	1.214 g
	Р	Q	R	S		
(a)	3	4	1	2		
(b)	3	2	4	1		
(c)	1	4	3	2		
(d)	3	4	2	1		

- 39. Bromine is prepared commercially by the reaction: $2Br_{(aq)} + Cl_{2(aq)} \rightarrow 2Cl_{(aq)} + Br_{2(aq)}$ Suppose we have 50.0 mL of 0.060 M solution of NaBr. What volume of 0.05 M solution of Cl_2 is needed to react completely with the Br⁻? (a) 30 mL (b) 40 mL (c) 20 mL (d) 60 mL
- **40.** What will be the molarity (in mol L^{-1}) of a solution, which contains 5.85 g of NaCl_(s) per 500 mL?

(a)	4	(b)	20

- (c) 0.2 (d) 2
- **41.** A sample of NaNO₃ weighing 0.38 g is placed in a 50.0 mL measuring flask. The flask is then filled with water upto the mark on the neck. What is the molarity of the solution?
 - (a) 0.85 M
 - (b) 0.090 M
 - (c) 0.0045 M
 - (d) 0.075 M
- **42.** A metal oxide has the formula Z_2O_3 . It can be reduced by hydrogen to give free metal and water. 0.1596 g of the metal oxide requires 6 mg of hydrogen for complete reduction. The atomic weight of the metal is

(a)	27.9	(b)	159.6
(c)	79.8	(d)	55.8

- 43. Match the List I with List II and select the correct answer using the code given below the lists :

List I

- P. 4.5 m solution of CaCO₃ 1. Mole fraction of (density 1.45 g/mL)
- Q. 100 mL of 3 M H₂SO₄ mixed with 300 mL of 1 M H₂SO₄ solution
- R. 14.5 m solution of Ca 3. Molarity = 4.5 M
- 40 g of NaOH is added to 4. Molarity 1.5 M 2 L of 4 M NaOH solution Р Q R S
- (a) 4 3 2
- 1 (b) 2 3 4 1
- (c) 3 4 1 2
- (d) 3 2 1 4
- 44. The density of 3 M sodium thiosulphate is 1.25 g mL⁻¹. Identify the correct statement(s) among the following.
 - (a) % by weight of sodium thiosulphate is 37.92.
 - (b) The mole fraction of sodium thiosulphate is 0.065.
 - (c) The molality of Na⁺ is 7.74 and $S_2O_3^{2-}$ is 3.87.
 - (d) All of the above.
- **45.** An experiment requires 100 cm³ of 20.0% H₂SO₄, density 1.14 g/cm³. How much concentrated acid of density 1.80 g/cm³ and containing 98% H_2SO_4 by weight, must be diluted with water to prepare 100 cm³ acid of the required solution?
 - (a) 8.1 cm^3 (b) 12.7 cm^3
 - (d) 21.3 cm^3 (c) 18.1 cm^3

EXAM SECTION

- **46.** A mixture of gases contains H_2 and O_2 gases in the ratio of 1:4 (*w*/*w*). What is the molar ratio of the two gases in the mixture?
 - (a) 16:1 (b) 2:1
 - (c) 1:4 (d) 4:1 (AIPMT 2015)
- 47. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution?

- (a) 3.5 g (b) 7 g
- (d) 28 g (c) 14 g (AIPMT 2015)
- **48.** If Avogadro number N_A , is changed from

 $6.022 \times 10^{23} \text{ mol}^{-1}$ to $6.022 \times 10^{20} \text{ mol}^{-1}$, this would change

- (a) the mass of one mole of carbon
- (b) the ratio of chemical species to each other in a balanced equation

- (c) the ratio of elements to each other in a compound
- (d) the definition of mass in units of grams.

(AIPMT 2015)

- **49.** The number of water molecules is maximum in
 - (a) 1.8 gram of water
 - (b) 18 gram of water
 - (c) 18 moles of water
 - (d) 18 molecules of water. (AIPMT 2015)
- **50.** Suppose the elements *X* and *Y* combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY_2 weighs 10 g and 0.05 mole X_3Y_2 weighs 9 g, the atomic weights of X and Y are

(a) 40, 30 (b) 60	, 40
-------------------	------

(c) 20, 30 (d) 30, 20

(NEET Phase-II 2016)

List II

is 360 g

solute = 0.2

2. Mass of the solute

OMR SHEET

INSTRUCTIONS

- Use HB pencil only and darken each circle completely.
- If you wish to change your answer, erase the already darkened circle completely and then darken the appropriate circle.
 Correct marking (h) (c) (d)

- N/	Mark only one choice for each question as indicated					
	ark only one cho		i as mulcaleu.	Wrong mark	ing 🛞 🌘 💽	
\bigcap						
1.	a	11. (a) (b) (c) (d)	21. a b c d	31. a b c d	41.abcd	
2.	(a) (b) (c) (d)	12. a b c d	22. a b c d	32. a b c d	42. a b c d	
3.	(a) (b) (c) (d)	13. a b c d	23. a b c d	33. a b c d	43. a b c d	
4.	(a) (b) (c) (d)	14. a b c d	24. a b c d	34. a b c d	44. a b c d	
5.	(a) (b) (c) (d)	15. a b c d	25. a b c d	35. a b c d	45. @ b c d	
6.	(a) (b) (c) (d)	16. a b c d	26. a b c d	36. a b c d	46. a b c d	
7.		17. a b c d	27. a b c d	37. a b c d	47. a b c d	
8.	(a) (b) (c) (d)	18.@b©d	28. a b c d	38. a b c d	48. a b c d	
9.		19. a b c d	29. a b c d	39. a b c d	49. a b c d	
1). @ b © d	20.@b©d	30.@ (b) (C) (d)	40.@b©d	50.@b©d	

For every correct answer award yourself 4 marks. For every incorrect answer deduct 1 mark.

	Check your score! If your score is		
JELF UNEUN	> 90% EXCELLENT WORK !	You are well prepared to take the challenge of final exam.	
No. of questions attempted	90-75% GOOD WORK !	You can score good in the final exam.	
No. of questions correct	74-60% SATISFACTORY !	You need to score more next time	
Marks scored in percentage	< 60% NOT SATISFACTORY!	Revise thoroughly and strengthen your concepts.	